Minimum Probability Flow Learning

نویسنده

  • A Taylor
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient and optimal Little-Hopfield auto-associative memory storage using minimum probability flow

We present an algorithm to store binary memories in a Little-Hopfield neural network using minimum probability flow, a recent technique to fit parameters in energy-based probabilistic models. In the case of memories without noise, our algorithm provably achieves optimal pattern storage (which we show is at least one pattern per neuron) and outperforms classical methods both in speed and memory ...

متن کامل

Efficient and optimal binary Hopfield associative memory storage using minimum probability flow

We present an algorithm to store binary memories in a Hopfield neural network using minimum probability flow, a recent technique to fit parameters in energybased probabilistic models. In the case of memories without noise, our algorithm provably achieves optimal pattern storage (which we show is at least one pattern per neuron) and outperforms classical methods both in speed and memory recovery...

متن کامل

Understanding Minimum Probability Flow for RBMs Under Various Kinds of Dynamics

Energy-based models are popular in machine learning due to the elegance of their formulation and their relationship to statistical physics. Among these, the Restricted Boltzmann Machine (RBM), and its staple training algorithm contrastive divergence (CD), have been the prototype for some recent advancements in the unsupervised training of deep neural networks. However, CD has limited theoretica...

متن کامل

Smoothed Analysis of Belief Propagation for Minimum-Cost Flow and Matching

Belief propagation (BP) is a message-passing heuristic for statistical inference in graphical models such as Bayesian networks and Markov random fields. BP is used to compute marginal distributions or maximum likelihood assignments and has applications in many areas, including machine learning, image processing, and computer vision. However, the theoretical understanding of the performance of B...

متن کامل

Variational Probability Flow for Biologically Plausible Training of Deep Neural Networks

The quest for biologically plausible deep learning is driven, not just by the desire to explain experimentally-observed properties of biological neural networks, but also by the hope of discovering more efficient methods for training artificial networks. In this paper, we propose a new algorithm named Variational Probably Flow (VPF), an extension of minimum probability flow for training binary ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011